Is Go set to take on Python?

Adith - The Data Guy
4 min readJun 13, 2021


When Rossum developed Python in the 1980s, did he know that it would become the world’s most widely used programming language? More than 8 million developers today, use Python as their primary development language. Thanks to its abundance of libraries, and plenty of applications. Be it website development, machine learning, or analytics, Python is being used everywhere that people can think.

One of the most important implementations of Python is observed while analyzing data. Ever since the wave of digitization swept industries off their feet. Be it healthcare, business, or any other industry. Developers are utilizing Python for data analytics, and it is proving to be great.

There are a few advantages of data analytics. On the one hand, it is helping people see the future with help from the past and the present. On the other hand, it is helping us to make better decision making in all the processes. The point is, whatever people or industries want to accomplish with the data, Python is assisting in it. Python has become a tool that makes complex and tangled data appear sorted and clear.

As the world evolves, new programming languages keep on emerging. They are born out of the shortcomings of existing languages and help improve the performance of the system in one way or another. One such programming language is Google’s Go.

Golang or Go is a programming language developed by Google, whose idea was realized in the year 2007. However, it was only in 2009 that the world saw its first release. Go is relatively much fresher than Python. Being known for ten years, why are people realizing Golang’s importance now more than ever? Is it because the light around Python is dimming? Whatever the reason, recent events have suggested that Google’s Go has more than a few advantages over Python, especially when we talk of data analytics.

Google’s Go was born out of the need for a language that was based on the syntax of C. As a result of this, the lead developers at Google Robert Greisemer, Rob Pike, and Ken Thompson created Go with many features of modern languages. Having said this, developers can easily find object-oriented features such as operator overloading, and pointer arithmetic, along with others. Apart from this, Go also has a robust library with unmatched performance and speed.

Even though Python can do a lot of what God does, it lacks in some aspects. When it comes to speed, dynamic typing, GIL, concurrency support, etc. Python shows clear signs of limitations for analytics. Let’s take a more in-depth look at what this comparison between Go and Python means for analytics.

Without any further due let’s get started!!!

With large amounts of data on the table, it is necessary to have an optimal performance during analysis. The analysis would be a lengthy process when data are abundant, and the developed system takes massive amounts of time to retrieve meaningful data out of it. We are somehow able to do it with Python. It might not seem as slow, but when compared to Google’s Go, it is easy to understand the difference.

Be it memory usage or time spent in a mathematical calculation, Golang is faster and less complex compared to Python.

Python has also been in the news recently because Golang replaced it. The cloud-based software company Salesforce thought it was better to use Google’s Go instead of Python for their data analytics program, Einstein Analytics. While this may come as a shock to Python lovers, the reality is that it’s challenging to write long lines of code in Python.

If something is limiting the growth of the system, it just turns out to be detrimental to a business. In the case of Salesforce, the company observed that Python miserably failed at multi-threading. Considering the future scope of scaling Einstein Analytics, continuing to use Python was a wrong choice.

There is nothing that can deny the fact that every language is built with a purpose of its own. Programming languages find their applications in related niches and continue to extend their reach. The abundance of libraries in Python gives it an upper hand for data analytics. Be it Pandas for data manipulation and analysis, Matplotlib for plotting and visualization, StatsModels for statistical modeling, testing, and analysis, or Seaborn for statistical data visualization. There is no end to the libraries you can use for data analytics in Python.

On the other hand, Go is more focused on being a system language that finds its acceptance in the field of cloud computing and cluster computing. In data analytics, its usage can be extended because of either its performance or the fact that it offers concurrency.

Python is one of the best languages for basic programming. However, if you have to write large amounts of code, it is best to use Go. Python’s lack of memory management, and dynamic typing facility with increasing length, make it an out-of-the-place option for extensive system development. Golang, on the other hand, has more transparent in-built functions but lacks data analytics libraries that Python supports. In other words, when the field of data analytics demands concise and quick answers, nothing can beat Python. However, if one is looking for a more business-oriented solution, Go is a preferable option.

Don’t forget to leave your responses.✌

Everyone stay tuned!! To get my stories in your mailbox kindly subscribe to my newsletter.

Thank you for reading! Do not forget to give your claps and to share your responses and share with a friend!

Originally published at



Adith - The Data Guy

Passionate about sharing knowledge through blogs. Turning data into narratives. Data enthusiast. Content Curator with AI.